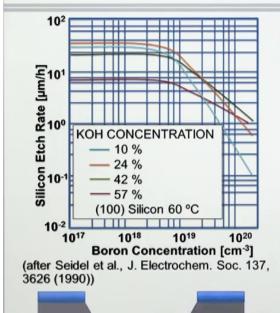


Aperçu une erreur ? Envoyez-nous votre commentaire ! Spotted an error? Send us your comment! https://forms.gle/hYPC8Auh6a4q52qT7

Anisotropic etching of Si

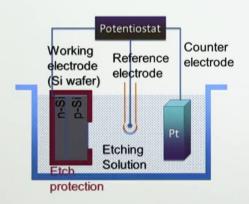

- Etch stop techniques for thin membrane microfabrication
- Bulk micromachining

Micro and Nanofabrication (MEMS)

In this lesson we will explain two techniques for stopping the etching in a very controlled way, allowing the microfabrication of very thin membranes. Then we will illustrate the potential of this technique for bulk micromachining which is microfabrication by etching through bulk parts of a wafer.

Etch stop by B implantation

implanted B

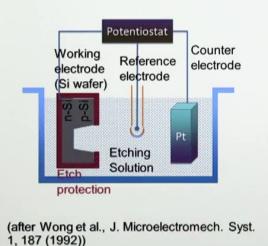

- For KOH-based solutions, significant reduction in etch rate for B concentrations in Si above 10¹⁹ cm⁻³
- At high B concentration, the Si Fermi level drops and the electrons tunnel into the valence band, where they recombine with holes, rather than staying at the Si surface for regeneration of new OH- ions
- Hence the etching stops
- Other anisotropic etching baths show similar effect upon B implantation in Si
- This property is used for making thin membranes

Micro and Nanofabrication (MEMS)

In our introductory lesson on wet etching we already mentioned that one can make a very thin silicon membrane by implanting it with boron. And if one etches, then, in KOH solution, the etching stops when one reaches this boron-doped membrane. We can now understand this. The figure shows the silicon etching rate as a function of the boron concentration for different KOH concentrations in the etching bath. For boron concentrations above 10^19 atoms/cm^3, the etch rate drops, and note that this is a logarithmic scale. This is due to the following mechanism: at high boron concentration, the silicon Fermi level drops and the electrons that originate from the negative hydroxyl ions tunnel directly into the valence band rather than staying on the silicon surface for regeneration of new hydroxyl ions from the water. Therefore the etching simply stops as these hydroxyl ions cannot be regenerated.

Electrochemical etch stop

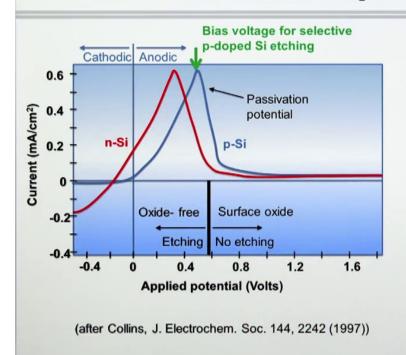
(after Wong et al., J. Microelectromech. Syst. 1, 187 (1992))


- Disadvantages of B etch-stop
 - Very high B concentrations are not compatible with standard CMOS or bipolar microelectronic devices
 - High B concentrations compromise the crystal quality (stress, slip planes)
- Alternative: <u>lightly</u> doped p-n junction is used by applying a bias voltage between the wafer and a reference electrode in the etchant
- The p-n junction can be formed by epitaxial growth of an n-type layer (P-doped 10¹⁵ cm⁻³) on a lightly B(p)-doped substrate

Micro and Nanofabrication (MEMS)

A disadvantage of the boron etch stop is that we have to use very high boron concentrations. And these are not compatible with standard microelectronic devices, and also these compromise the crystal quality of the silicon. Therefore an interesting alternative for making a thin membrane, is the so-called <i>electrochemical etch stop.</i> In this case, we take a lightly p-doped silicon substrate and one deposits on top of that, a lightly doped silicon layer with n-type impurities. Then one brings this substrate in the etching solution, in the KOH solution. So the red part is protection against etching and this part of the wafer is seeing (is in contact with) the etching solution.

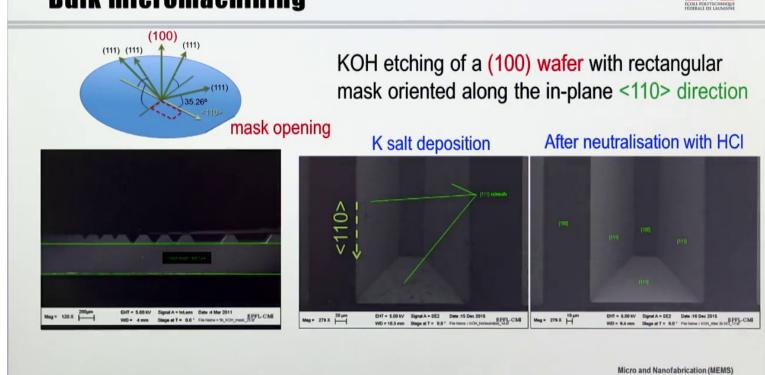
Electrochemical etch stop


- Applying a positive potential to the wafer produces holes h⁺ at the Si/solution interface
- Two mechanisms involved
 - SiO₂ formation: Si-OH and Si-OH form passivating SiO₂ at surface, splitting off H₂O
 - SiO₂ dissolution by SiO₂(OH)_x complex formation.
- At V below the passivation potential: oxide is formed and etched away
- Above the passivation potential: complete passivation and all etching stops
- The passivation potential depends on dopant type

Micro and Nanofabrication (MEMS)

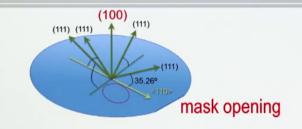
The end result of the etching is shown here. We have etched through the p-doped silicon, and we recognize the (111) planes here. But when we have reached the n-type doped silicon, the etching stops, and in this way we can make here a thin membrane. How does this work? Two mechanisms are involved. First, we apply a positive potential here, which produces holes at the silicon solution interface, and these attract hydroxyl ions and form silicon dioxide. A competitive process is the dissolution of this silicon dioxide forming this complex (SiO2(OH)x) that goes into the solution. If the voltage that is applied to the wafer is below the so-called <i>passivation potential,</i> the oxide will be formed and will be dissolved, will go into the solution. So there is continuous oxidation, continuous removal of silicon, so that means etching. Above this passivation potential there will be complete passivation by oxidation and all etching stops. Why does it stop at the interface with the n-type doping? That is because this passivation potential changes and depends on the doping type.

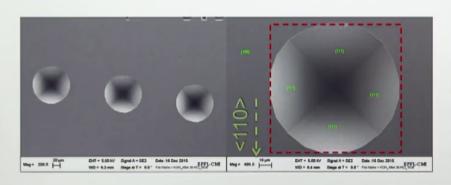
Electrochemical etch stop


- Current-voltage characteristic of pdoped Si
- Current-voltage characteristic of ndoped Si
- By selecting the bias voltage at high p-Si etch rate and zero(low) n-Si etch rate, one can selectively remove the p-Si

Micro and Nanofabrication (MEMS)

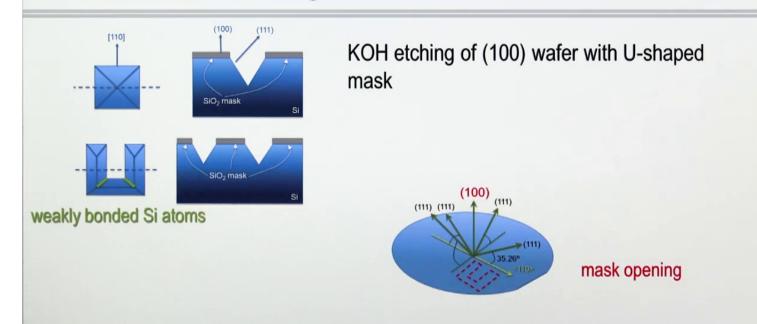
This shows a typical current-voltage characteristic for p-doped silicon. Below the passivation potential, that is on this side, there is a current flowing. As holes get transported to the substrate, where they oxidize the silicon, after which the oxide is removed by formation of the complex, which is an etching process. Above the passivation potential, the current drops as the surface is covered with an oxide and no etching occurs. Here we have added the current-voltage characteristic of n-doped silicon. It has a similar behavior but the passivation potential is different. So this shows where we have to put the bias voltage. It's where there is the green arrow. When this is the voltage we apply, we will have high etching of p-doped silicon, and zero or very little etching of n-doped silicon. And then when reaching the membrane with n-type doping, the etching will stop.





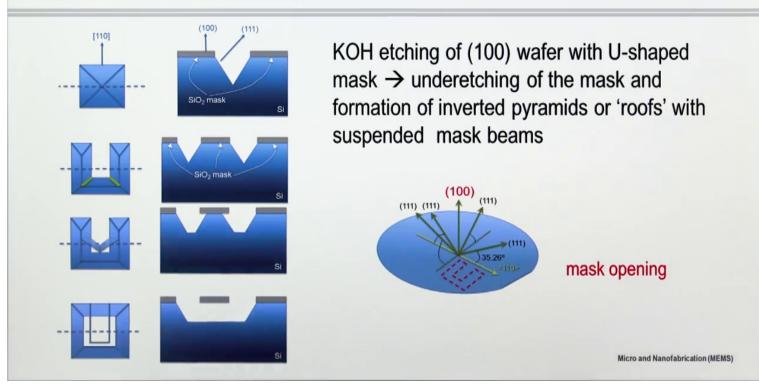
We now give examples of bulk micromachining of a (100) oriented silicon wafer in a KOH bath. We draw the wafer with the four vectors indicating the norms to the respective (111) planes. We have covered the wafer with a mask with a rectangular opening, which is oriented along the lt;110gt; direction in real space. The picture below shows a cross section of the etching, where one recognizes the typical V-shape for a rectangular opening. If the lt;110gt; direction is in this direction, the (111) planes, indeed, are oriented with these facets. After etching, potassium salt residues originating from the KOH bath, may remain on the etched structure. These deposits can be removed by immersing the wafer in an HCl bath.

KOH etching of (100) wafers with arbitrary mask →underetching of the mask and formation of inverted pyramids or 'roofs'

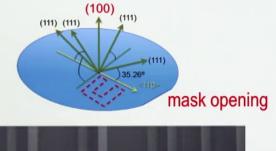


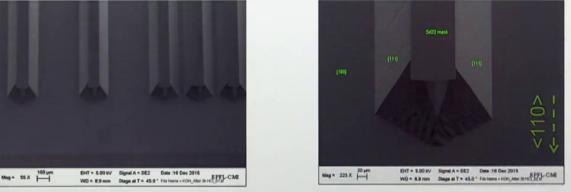
Micro and Nanofabrication (MEMS)

We have again drawn the same (100) wafer but now we have deposited a mask with a circular opening, like given by this dashed line. If we look through a circular opening after etching, we see, again, four (111) planes. And we see that the mask is underetched, so a complete inverted pyramid is present underneath the circular mask. The contour of the basis of this pyramid is shown by this dashed line. The end result of such a microfabrication step is a square or more generally a rectangular structure, which encompasses all extremities of the mask. That is because for this situation, all (111) planes are perfectly protected by the mask and no chemical attack via etching of other crystal planes are possible to remove the silicon atoms on a (111) plane. The picture here shows, again, an arbitrary mask and underneath, one sees indeed again, these V-shaped underetched structures.



Micro and Nanofabrication (MEMS)


This example shows the etching of a (100) wafer where we have here a U-shaped mask. We know already that the final structure that will be etched will be an inverted pyramid, the basis of which encompasses all extremities of the mask opening. So the pyramid will be like that. However, before reaching this end result, the etching bath will etch rectangular openings, like shown here, and at this stage the etched structure is stable, and has (111) planes that are not attackable via other crystal planes, except for these two ridges, indicated by the green lines. At the top of these ridges, the silicon atoms that are fixed there, have less than three backbonds to the silicon, which is the reason why they are not so strongly bound and why these get attacked in the KOH bath.



Therefore at the ridges, the etching continues, and the etching front proceeds underneath the mask creating this suspended mask structure. At the same time, the etching proceeds also in the vertical direction so that the pyramidal hole gets deeper and deeper.

KOH etching of (100) wafer with U-shape type mask →underetching of the mask and formation of suspended mask (SiO₂) beams

Micro and Nanofabrication (MEMS)

This picture shows the situation when the etching under such a beam is proceeding. So here we have a mask beam. These are (111) planes, which are not attacked, but here there is attack on these planes. So this feature is magnified here. So you see here that the (111) planes will disappear at the end because the attack is going on by these planes here, and the complete silicon underneath the beam will be etched away like that.

Bulk micromachining KOH etching of (100) wafer with rectangular mask oriented along in-plane <100> direction → etching of vertical walls, i.e. the (010) and (001) planes End result

Micro and Nanofabrication (MEMS)

A last example of bulk micromachining is one in which one has again, a (100) wafer with a rectangular mask that has now been oriented along an in-plane lt;100gt; direction. That means that this rectangle has been reoriented over an in-plane angle of 45-degrees, with respect to the initial rectangular mask we considered. So this is the mask, this is the lt;110gt; direction, and we know that the end result will be an inverted pyramid like that. From the beginning of the etching, the (111) planes in these four corners will immediately appear and will not be attacked. However, an interesting intermediate etching result appears, which is sketched in this cross section. Here one sees a hole that is etched, and a vertical plane, and this vertical plane, during etching, is going further and further underneath the mask. How can we understand this? We have here a (100) orientation of the wafer. If we orient the square in the mask like this, this direction will be a (010) plane, and this will be a (001) plane. So that means that the planes are identical in the vertical and in the horizontal direction. So exactly the same etching rate, which will give such a rectangular hole. And these vertical walls, we see it here, and progessively the vertical holes will move in this direction to the extreme directions. At the end, one will reach a (111) plane and if one waits long enough, there will be only the (111) facets of the inverted pyramid which are visible.

Summary

- Etch stop techniques
 - B doping
 - · Electrochemical etch stop
- Examples of bulk micromachining

Micro and Nanofabrication (MEMS)

In this lesson we have discussed two etch stop techniques by which one can make very thin membranes. One etch stop technique was due to a heavy boron-doping, and the second technique was the eletrochemical etch stop exploiting the junction between lightly p- and n-doped silicon. Finally, we gave examples of bulk micromachining based on the orientation and shape of the mask on a (100) silicon wafer.